Immune consequences of penfluridol treatment associated with inhibition of glioblastoma tumor growth

نویسندگان

  • Alok Ranjan
  • Stephen Wright
  • Sanjay K Srivastava
چکیده

Glioblastoma is the most common and lethal brain tumor associated with only 12% median survival rate of patients. Despite the development of advanced surgical, radiation or use of combinations of anti-cancer drugs, treatment for glioblastoma patients is still a challenge. The major contributing factor in glioblastoma progression and resistive nature is its ability to evade the immune surveillance. Hence, modulating the immune system in glioblastoma tumors could be an important strategy for anticancer therapeutics. Penfluridol, an antipsychotic drug has been shown to have anti-cancer properties in our recently published studies. The present study evaluates the immune response of penfluridol in glioblastoma tumors. Our results demonstrated that penfluridol treatment significantly suppressed glioblastoma tumor growth. Our current results demonstrated about 72% suppression of myeloid derived suppressor cells (MDSCs) with penfluridol treatment in mouse bearing U87MG glioblastoma tumors. MDSCs are known to increase regulatory T cells (Treg), which are immunosuppressive in nature and suppresses M1 macrophages that are tumor suppressive in nature. Our results also showed suppression of regulatory T cells as well as elevation of M1 macrophages with penfluridol treatment by 58% and 57% respectively. Decrease in CCL4 as well as IFNγ with penfluridol treatment was also observed indicating decrease in overall tumor inflammation. This is the first report demonstrating immune modulations by penfluridol treatment associated with glioblastoma tumor growth suppression prompting further investigation to establish penfluridol as a treatment option for glioblastoma patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1

Glioblastoma (GBM) is the most common brain tumor with poor survival rate. Our results show that penfluridol, an antipsychotic drug significantly reduced the survival of ten adult and pediatric glioblastoma cell lines with IC50 ranging 2-5 μM after 72 hours of treatment and induced apoptosis. Penfluridol treatment suppressed the phosphorylation of Akt at Ser473 and reduced the expression of GLI...

متن کامل

P112: Tumour Associated Macrophages and Vasculogenic Mimicry: A New Insight in Glioblastoma Treatment

Glioblastoma is one of the most common brain tumors in adults with poor prognosis, aggressiveness, and treatment resistance. Vasculogenic mimicry (VM) consists of generating vascular-like channels by tumor cells, independent of endothelial angiogenesis. Studies showed in glioblastoma, the proportion of VM to all vascular channels is associated with poor prognosis and higher invasiveness levels....

متن کامل

P157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform

Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis.  In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...

متن کامل

P105: Inhibition of Vasculogenic Mimicry in a Three-Dimensional Culture in Glioblastoma

Glioblastoma is one of the most common primary brain tumors (80% of patients) that has a poor prognosis due to malignancy. Glioblastoma has an annual incidence of 5.26 per 100 000 population or 17 000 new diagnoses per year and so as the population aging, the number of patients is expected to increase. There is a growing body of literature investigating the tumor microenvironmenta...

متن کامل

Penfluridol: An Antipsychotic Agent Suppresses Metastatic Tumor Growth in Triple-Negative Breast Cancer by Inhibiting Integrin Signaling Axis.

Metastasis of breast cancer, especially to the brain, is the major cause of mortality. The inability of anticancer agents to cross the blood-brain-barrier represents a critical challenge for successful treatment. In the current study, we investigated the antimetastatic potential of penfluridol, an antipsychotic drug frequently prescribed for schizophrenia with anticancer activity. We show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017